AWS Services Cloud Architecture DevOps

Advanced AWS EC2: Optimizing Performance and Cost Efficiency ๐Ÿš€

Table of Contents

Instance Strategy ๐Ÿ’ป

Selecting the Right Instance Type

# Get instance type recommendations based on CloudWatch metrics
aws compute-optimizer get-ec2-instance-recommendations \
    --instance-arns arn:aws:ec2:region:account-id:instance/i-1234567890abcdef0

# List available instance types with specific criteria
aws ec2 describe-instance-types \
    --filters "Name=processor-info.supported-architecture,Values=arm64" \
    --query "InstanceTypes[?MemoryInfo.SizeInMiB>=8192]"

Generation Comparison Matrix:

FeatureM5M6iM6g (Graviton2)
vCPUsUp to 96Up to 128Up to 64
MemoryUp to 384 GBUp to 512 GBUp to 256 GB
NetworkUp to 25 GbpsUp to 37.5 GbpsUp to 25 Gbps
Price/Hour*$0.192$0.208$0.168

*Prices are example only, check current AWS pricing

Graviton Adoption Strategy

# CloudFormation template for mixed-architecture deployment
Resources:
  GravitonLaunchTemplate:
    Type: AWS::EC2::LaunchTemplate
    Properties:
      LaunchTemplateData:
        InstanceType: c6g.large
        ImageId: ami-0123456789abcdef0  # ARM64 AMI
        UserData: 
          Fn::Base64: !Sub |
            #!/bin/bash
            # Optimize for ARM64
            amazon-linux-extras install epel
            yum install -y tuned
            tuned-adm profile throughput-performance

Cost Optimization ๐Ÿ’ฐ

Savings Plans vs Reserved Instances

import boto3

def analyze_usage_patterns():
    client = boto3.client('ce')

    response = client.get_cost_and_usage(
        TimePeriod={
            'Start': '2024-01-01',
            'End': '2024-01-31'
        },
        Granularity='MONTHLY',
        Metrics=['UnblendedCost', 'UsageQuantity'],
        GroupBy=[
            {'Type': 'DIMENSION', 'Key': 'INSTANCE_TYPE'},
            {'Type': 'DIMENSION', 'Key': 'REGION'}
        ]
    )
    return response

Spot Strategy Implementation

{
  "SpotFleetRequestConfig": {
    "IamFleetRole": "arn:aws:iam::account-id:role/spot-fleet-role",
    "AllocationStrategy": "capacityOptimized",
    "TargetCapacity": 10,
    "SpotPrice": "0.50",
    "LaunchSpecifications": [
      {
        "InstanceType": "c5.large",
        "WeightedCapacity": 1
      },
      {
        "InstanceType": "c5n.large",
        "WeightedCapacity": 1
      },
      {
        "InstanceType": "c6i.large",
        "WeightedCapacity": 1
      }
    ]
  }
}

Performance Tuning โšก

EBS Optimization

# Enable EBS optimization
aws ec2 modify-instance-attribute \
    --instance-id i-1234567890abcdef0 \
    --ebs-optimized "Value=true"

# Create optimized volume
aws ec2 create-volume \
    --volume-type io2 \
    --iops 50000 \
    --size 1000 \
    --availability-zone us-west-2a \
    --encrypted

Network Performance Configuration

# Enable enhanced networking
aws ec2 modify-instance-attribute \
    --instance-id i-1234567890abcdef0 \
    --sriov-net-support simple

# Configure placement group
aws ec2 create-placement-group \
    --group-name HighPerformanceCompute \
    --strategy cluster

Architecture Patterns ๐Ÿ—๏ธ

Multi-AZ High Availability Setup

# Terraform configuration
resource "aws_autoscaling_group" "web_asg" {
  name                = "web-asg"
  desired_capacity    = 6
  max_size           = 10
  min_size           = 4
  target_group_arns  = [aws_lb_target_group.web_tg.arn]
  vpc_zone_identifier = [
    aws_subnet.private_1a.id,
    aws_subnet.private_1b.id,
    aws_subnet.private_1c.id
  ]

  mixed_instances_policy {
    instances_distribution {
      on_demand_base_capacity                  = 2
      on_demand_percentage_above_base_capacity = 50
      spot_allocation_strategy                 = "capacity-optimized"
    }

    launch_template {
      launch_template_specification {
        launch_template_id = aws_launch_template.web_lt.id
        version           = "$Latest"
      }

      override {
        instance_type = "c6i.large"
      }
      override {
        instance_type = "c6a.large"
      }
      override {
        instance_type = "c6g.large"
      }
    }
  }
}

Monitoring & Analytics ๐Ÿ“Š

CloudWatch Dashboard Configuration

{
  "widgets": [
    {
      "type": "metric",
      "properties": {
        "metrics": [
          ["AWS/EC2", "CPUUtilization", "InstanceId", "i-1234567890abcdef0"],
          [".", "NetworkIn", ".", "."],
          [".", "NetworkOut", ".", "."],
          [".", "DiskReadOps", ".", "."],
          [".", "DiskWriteOps", ".", "."]
        ],
        "period": 300,
        "stat": "Average",
        "region": "us-west-2",
        "title": "EC2 Performance Metrics"
      }
    }
  ]
}

Cost Anomaly Detection

def setup_cost_anomaly_detection():
    client = boto3.client('ce')

    response = client.create_anomaly_monitor(
        MonitorName="EC2CostMonitor",
        MonitorType="DIMENSIONAL",
        MonitorDimension="SERVICE",
        MonitorSpecification={
            "Services": ["Amazon Elastic Compute Cloud - Compute"]
        }
    )

    client.create_anomaly_subscription(
        SubscriptionName="EC2CostAlerts",
        Threshold=200.0,
        ThresholdExpression="ABSOLUTE_VALUE",
        Frequency="DAILY",
        Subscribers=[
            {
                'Type': 'EMAIL',
                'Address': '[email protected]'
            }
        ]
    )

Best Practices Checklist โœ…

Performance Optimization

  • [ ] Use enhanced networking for high throughput
  • [ ] Implement proper placement groups
  • [ ] Configure EBS IOPS appropriately
  • [ ] Enable monitoring and alerting
  • [ ] Use latest generation instances

Cost Management

  • [ ] Implement proper tagging strategy
  • [ ] Use Savings Plans for predictable workloads
  • [ ] Leverage Spot Instances for flexible workloads
  • [ ] Schedule dev/test environments
  • [ ] Regular right-sizing analysis

Case Study: High-Traffic Web Application

Scenario: E-commerce platform handling 1M daily users

Solution Architecture:

  • 1. Multi-AZ deployment with Auto Scaling
  • 2. Mix of On-Demand and Spot Instances
  • 3. Graviton2 instances for API servers
  • 4. Reserved Instances for baseline capacity
  • 5. CloudWatch monitoring with custom metrics

Results:

  • 40% cost reduction
  • 99.99% availability
  • 30% performance improvement
  • Enhanced disaster recovery capability

Future Considerations ๐Ÿ”ฎ

1. Graviton3 Migration

  • 25% better compute performance
  • 60% better price-performance ratio
  • Native ARM64 application support

2. Sustainability Optimization

  • Use Graviton for better energy efficiency
  • Implement proper instance scheduling
  • Choose regions with renewable energy

3. Emerging Technologies

  • AWS Nitro Enclaves for security
  • AWS Wavelength for edge computing
  • AWS Outposts for hybrid deployments

Additional Resources ๐Ÿ“š

1. AWS Documentation

2. Tools

Keep optimizing! ๐Ÿš€

To top